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Motivation
Many important classes of signals are either sparse, or compressible.
Examples: sparsity in : (a) standard, (b) Fourier, (c) wavelet basis.

100 200 300 400 500

100

200

300

400

500

100 200 300 400 500

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

1.5

2

0 50 100 150
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 50 100 150
0

10

20

30

40

50

60

70

CS: K-sparse x ∈ R
N . We take M << N measurements

y = Ax + n, and try to recover x knowing that it is sparse.

Related problems: recovering structure of graphical models from
samples, recovering low-rank matrices from few measurements, ...
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Motivation
CS: for certain random A, x can be efficiently recovered with high
prob. after O(K log(N/K)) samples, where x is K-sparse.

However:

• may not know K a-priori

• such bounds are not available for
all decoders

• constants may not be tight.

How many samples to get?

Req. M for signal with K = 10.
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Our approach: receive samples sequentially yi = a′
ix and stop once

we know that enough samples have been received.

3



Presentation Outline
1. CS formulation with sequential observations.

2. Stopping rule for the Gaussian case.

3. Stopping rule for the Bernoulli case.

4. Near-sparse and noisy signals.

5. Efficient solution of the sequential problem.
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Batch CS
Batch CS: suppose y = Ax∗. Find the sparsest x satisfying y = Ax.
Relaxations: greedy methods, convex ℓ1, non-convex ℓp, sparse
Bayesian learning, message passing, e.t.c. – these all give sparse
solutions. How to verify that the solution also recovers x∗?
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Top plot: reconstruction from
M = 20 samples, N = 80.

Bottom plot: using M = 21 sam-
ples (correct).

To guarantee correct reconstruction with high probability - we need
a superfluous number of samples to be on the ’safe side’.
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Sequential CS formulation
Observations are available in sequence: yi = a′

ix
∗, i = 1, .., M .

At step M we use any sparse decoder to get a feasible solution x̂M ,
e.g. the ℓ1 decoder:

x̂M = arg min ||x||1 s.t. a′
ix = yi, i = 1, .., M

and either declare victory and stop, or ask for another sample.

Q: How does one know when enough samples have been received?

Waiting for M ∝ CK log(N/K): requires knowledge of K,
K = ‖x∗‖0. Also only rough bounds on proportionality constants
may be known, and not even for all algorithms.
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Gaussian measurement case
Receive yi = a′

ix
∗, where ai ∼ N (0, I) i.i.d. Gaussian samples.

Claim: if x̂M+1 = x̂M then x̂M = x∗ with probability 1.
AM , [a′

1, ...a
′
M ]′

AM
x = y1:M

x̂
M

x
∗

aT

M+1x = yM+1

A new sample a′
M+1x = yM+1 passes a random hyperplane through

x∗. Probability that this hyperplane also goes through x̂M is zero.
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Gaussian case (continued)
Even simpler rules: (i) if ‖x̂M‖0 < M or if (ii) a′

M+1x̂
M = yM+1

then x̂M = x∗.

This works because for a random Gaussian matrix all M × M
submatrices are non-singular with prob. 1.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

 ||x||
0

0 5 10 15 20 25 30 35 40
0

5

10

15

 ||x||
1

0 5 10 15 20 25 30 35 40
0

2

4

6

 ||y − A x||
2

M

Example: N = 100, and K = 10.

Top plot: ‖x̂M‖0.
Midle plot: ‖x̂M‖1.
Bottom plot: ‖x∗ − x̂M‖2.
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Bernoulli case
Let ai have equiprobable i.i.d. Bernoulli entries ±1. Now M × M
submatrices of AM can be singular (non-0 probability).

The stopping rule for the Gaussian case does not hold. We modify
it as follows: wait until x̂M = x̂M+1 = ... = x̂M+T .

Claim: After T -step agreement P (x̂M+T 6= x∗) < 2−T .

Proof depends on Lemma (Tao and Vu): Let a ∈ {−1, 1}N be an
i.i.d. equiprobable Bernoulli. Let W be a fixed d-dimensional
subspace of R

N , 0 ≤ d < N . Then P (a ∈ W ) ≤ 2d−N .

Suppose x̂M 6= x∗. Let J and I be their supports, L = |I ∪ J |.
Then A = {aI∪J | (x̂M − x∗)′ aI∪J = 0} is an (L − 1)-dim.

subspace of R
L. Prob that aM+1

I∪J
belongs to A is at most 1/2. ⋄
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Bernoulli case (continued)
Rule only uses T . Ideally we should also use M and N : errors are
more likely for smaller M and N .

Conjecture: for M × M matrix P (det(A) = 0) ∝ M221−M . (Main
failure: a pair of equal rows or columns). Best provable upper
bound is still quite loose. Such analysis could allow shorter delay.
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Example with K = 3, N = 40.
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Example with K = 10, N = 40.
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Near-sparse signals
In many practical settings signals are near-sparse: e.g. Fourier or
wavelet transforms of smooth signals.
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(a) signal,
(b) wav. coeffs.,
(c) coeffs. sorted.

CS results: with roughly O(K log N) samples, x̂M has similar error
to keeping K largest entries in x∗.

Our approach:

Given x̂M , we obtain T new samples, and find distance from x̂M to
HM+T , {x | yi = a′

ix, 1 ≤ i ≤ M + T}. This distance can be used
to bound the reconstruction error ‖x∗ − x̂M‖2.
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Near-sparse signals (continued)

Let HM+T , {x | yi = a′
ix, i = 1, .., M + T}. Let θT be the angle

between the line (x∗, x̂M ) and HM+T .

d(x∗, x̂M ) =
d(x̂M , HM+T )

sin(θT )
, CT d(x̂M , HM+T )

x̂
M+T

x̂
M

x
∗

θT

HT

M+TAM
x = y1:M

Let L = N − M .
Using properties of χL, χ2

L and
Jensen’s ineq. we have:

E[ 1
sin(θ) ] ≈

√

L
T
≤

√

L−2
T−2

V ar
[

1
sin(θ)

]

≤ L−2
T−2 − L

T
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Examples: near-sparse signals
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(Top) sample CT , approx and
bound.
(Bottom) sample std of CT ,
and a bound. L = 100.
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Errors and bounds for (Top) sparse

sig., N = 100, T = 5, K = 10.

(Bottom): power-law decay signal,

N = 1000, T = 10.
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Near-sparse and noisy: simplified
approach

Current solution x̂, true: x∗. Take T new samples yi = a′
ix

∗, and
compute ŷi = a′

ix̂. Denote the error by δ = x̂ − x∗, and let
zi = ŷi − yi. Then

zi = a′
iδ, 1 ≤ i ≤ T

Now zi’s are i.i.d. from some a zero-mean distribution with
variance ‖δ‖2

2 V ar(aij).

We can estimate ‖δ‖2
2 by estimating the variance of the zi. For

example, for Gaussian ai, confidence bounds on ‖δ‖2
2 can be

obtained from the χ2
T distribution.

This is related to recent paper by Ward, ”Compressed sensing with
cross-validation” that uses the Johnson-Lindenstrauss lemma.
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Solving sequential CS
Main goal of sequential CS – min number of samples. Yet, we also
want efficient solution – not just resolving each time.

Warm-starting simplex: xM is not feasible after M + 1-st sample.
Add a ’slack’ variable: min ‖x‖1 + Qz, where y1:M = AMx,
yM+1 = a′

M+1x− z, z ≥ 0. For Q large enough, z is forced to 0.
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Alternative approach: homotopy continuation between x̂M and
x̂M+1 – follow the piece-wise linear solution path. Garrigues and
El Ghaoui, 2008, and indep. Asif and Romberg, 2008.
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Summary and future work
Sequential processing can minimize the number of required
measurements.

• Gaussian case: a simple rule requires the least possible number
of samples.

• Bernoulli case: trade-off between probability of error and delay.

• Near-sparse and noisy case: Change in solutions gives us
information about solution accuracy.

Interesting questions:

• Related results in graphical models structure recovery from
samples, and low-rank matrix recovery.

• More efficient sequential solutions.

• Comparison with active learning approaches?
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